I/0O Performance on the Connection Machine DataVault
System

John Krystynak*
Computer Sciences Corporation
NASA Ames Research Center
Moftett Field, CA 94035

Abstract

This paper presents performance measurements of the Connection Machine DataVault system.
The DataVault is an I/0 system for mass storage. Theoretically, the DataVaull configuration
at NASA Ames Numerical Aerodynamic Simulation Facility is capable of transfer rates of 32
megabyles/sec. The major limitation of the current DataVault configuration is its inability to use
more than one CMIO bus to communicate between the Connection Machine and the DataVault.
Overall however, the DataVault is an effective 1/O system. Performance statistics show that
actual DataVault I/0O performance can be close to peak theoretical rates. I/0 system behavior
from CM Foriran and C/PARIS is described. Graphs of performance resulls are given, with
interpretation focusing on how to realize good CM I/0 system throughput.

1 Introduction

The Connection Machine (CM) I/O system is comprised of the CM, the CM I/O busses and
the DataVault. This system affects computational fluid dynamics (CFD) applications on the
CM since it is where data, grid and solution files are often stored. Because CFD applications
and other applications depend on the CM I/O system for mass storage, the performance of the
CM I/0 system affects overall throughput of many codes. Therefore, it is important to have an
idea of I/O performance on the CM system.

Many factors influence DataVault I/O throughput. Some of these factors include: hardware
architecture of the system, software interface used, user load on the CM front-ends, and how
the system is used. In this paper, the examination is focused on the hardware performance
capabilities of the DataVault system. Basic tests are run on the DataVault to determine the
maximum performance given a fixed hardware configuration. No attempt is made to simulate
the I/O requirements of a CFD application.

The results presented in this paper are intended to verify and explain the behavior of the
CM, DataVault and the CM I/O busses. The results are relevant to application developers
for predicting and checking 1/O performance. Other I/O hardware, such as the CM-HiPPI is
similarly affected by the performance of the I/O busses and CM, and some tests may be helpful
to users of such hardware.

The key sections of the investigation are:

e Explanation of the CM I/O and DataVault system configuration.

e Explanation of the performance tests.

*Work Supported by NASA Contract NAS 2-12961

e Performance results and graphs.

e Conclusions and summary.

2 CM I/0O Configuration at NASA Ames

The layout of the CM 1/O system determines the maximum I/O throughput which the CM
and DataVault can attain. The key components of the CM I/O system at the Numerical
Aerodynamic Simulation (NAS) Facility are as follows:

e 32,768 processor CM-2.

e 25 gigabyte DataVault.

e 2 32MB/sec CM I/O busses.

e 4 CM I/O Controllers (CMIOC).

The CM has four ports (CMIOCs) to the I/O busses, one for each sequencer. Each I/O bus is
attached to two ports. At NAS, the even-numbered sequencers are attached to CMIO bus #2,
the odd sequencers are attached to CMIO bus #1. The CMIO busses each support a maximum
transfer rate of 32MB/sec. The DataVault, however, can only interact with one CMIO bus at
a time. This means that the DataVault is limited to a maximum transfer rate of 32MB/sec. A
device which can interact with both busses would be capable of 64MB/sec. A striped 1/O system
consisting of 2 or more DataVaults could use both busses for peak transfer rates of 64MB/sec.
A CM-HIPPI network device can also use more than one CMIO bus at a time. The architecture
of the current CM I/O system is illustrated in figure 1.

3 How the Performance Tests are Conducted

The purpose of the performance tests is to determine I/O performance characteristics of the
CM I/0O system. The tests are not designed to simulate production codes.

There are two types of performance tests in this paper, slicewise (written in CM Fortran)
and fieldwise (in C/PARIS and CM Fortran). Slicewise programs view the CM architecture as
a collection of floating point units, each served by 32 CM processors. In slicewise execution, one
32-bit floating point number can be supplied to a floating point unit every clock cycle. A floating
point unit takes a ‘slice’ across 32 CM processors to form an operand each cycle. In fieldwise
mode, a floating point unit is supplied with 32 operands from 32 CM processors every 32 cycles,
with each CM processor delivering one bit per cycle. The term ‘fieldwise’ is derived from the
notion that each CM processor addresses a field of bits, in this case the 32 bits which form
single-precision real number. Slicewise format offers more floating point performance potential
than fieldwise format, but not necessarily more I/O throughput performance.

CM Fortran codes can be slicewise or fieldwise and employ the CM Fortran Utility library
to do I/O operations. Paris codes are fieldwise and employ the CM file system (CMFS) library,
which supports some advanced features such as buffered and stream I/O. The CM Fortran
Utility library does not support buffered or streaming I/O operations.

In all cases, the test programs open a file descriptor, write to the file, then read the file and
close it. The data read is compared to the written data for equivalency. CM reads and writes to
the DataVault conform to the shape of the CM geometry during the I/O operation. In all tests,
the geometry of the CM is 1-dimensional NEWS of N processors. Each test creates its own files
to ensure geometries of read and write files are equivalent to machine geometry. Unless noted
otherwise, results of tests are achieved with version 6.1 software. All CM Fortran tests were
conducted with CMSS version 6.1.

Timings are conducted using the CM timer software facilities. The CM timer routines record
time elapsed and time busy. The former is the wall clock time to execute the code between
the timer start and timer stop, while the latter is the time the CM itself is busy executing the
instructions. Calculations for all timings and transfer rates in this paper use the elapsed time.
Tests under 6.1 contain data points for 4,194,304 and 8,388,608 virtual processors (VPs), while
tests under 6.0 have a maximum of 2,097,152 (VPs). The timings presented in this paper are
averages of separate test runs. Tests were conducted at various levels of system usage, ranging
from unloaded to heavily loaded.

4 PARIS Performance Tests, Graphs and Conclusions

This section covers the methodology of the PARIS performance tests, the resulting perfor-
mance graphs and their interpretation. It is more extensive than the analogous CM Fortran
section primarily because PARIS and the CMFS library offer a richer set of routines for using
and investigating the CM I/0 system.

4.1 PARIS Performance Tests

The PARIS tests have only one I/O format, fieldwise, but the CMFS 1/O library contains
routines for doing several different types of I/O. The basic test concerns synchronous 1/0 on
the DataVault. The test program source lines which do the work are as follows:

#define CHAR 8

/* Write to DataVault */

CM_timer_clear(0);

CM_timer_start(0);

if ((i = CMFS_write_file_always(par_fd, temp, CHAR*num_bytes)) < 0)
CMFS_perror("write error");

CM_timer_stop(0);

The call to CMFS_write file always has each virtual processor write num bytes bytes. The
timers are wrapped around this call, so only the actual write is timed. The write is a synchronous
I/O operation. The read call is handled exactly the same as the write, except for the function
name, and a different file descriptor in the call.

The above routine is an example of synchronous I/O on the DataVault. The other types of
I/O operations available on the DataVault are streaming I/O and buffered I/O. Streaming I/O
is beneficial for applications which can read or write a large amount of data, in an uninterrupted
stream. A streaming read attempts to keep the CMIOC’s FIFO buffers full, until there is no
more data available for reading or writing. Streaming I/O is disabled when running under
timesharing. Streaming I/O is not tested in this paper, though performance characteristics of
streaming I/O may be estimated from the behavior of synchronous I/O. For more information
on streaming I/0O, see [2].

Buffered I/O gives better results for repeated transfers of small amounts of data, which can
be buffered and transferred in larger chunks. The programmer designates a memory field to use
as the I/O buffer. The call to CMFS_buffered write file always writes data to the memory
field when space is available, and flushes the buffer to disk when necessary. Several tests are
conducted with buffered I/O to determine its efficiency. The buffered I/O test loop is shown
below.

#define CHAR 8

/* Set the I/0 buffer size */
if (CMFS_setbuffer(par_fd, iobuf, buflen) < 0)
CMFS_perror("Write can’t setbuffer");

/* Do buffered write to DataVault */
CM_timer_clear(0);
CM_timer_start(0);
for (times = 0; times < buflen/(CHAR*num_bytes); times++)
if (CMFS_buffered write_file_always(par_fd, temp, CHAR*num_bytes) < 0)
CMFS_perror("write error");
if (CMFS_flush(par_fd) < 0)
CMFS_perror("Write can’t flush buffer");
CM_timer_stop(0);

The Buffered I/0 test repeatedly writes 4-bytes at a time to a buffer of 512-bytes, until the
buffer is full. The CMFS_flush call guarantees that the buffer is fully written to disk before
stopping the CM timer.

4.2 PARIS Performance Graphs

The many graphs relating PARIS 1/O performance are grouped for easy comparison. The
following sections describe the major groupings.

4.2.1 Comparison Between 8K, 16K, and 32K Processor Performance

The first set of graphs (figures 2 thru 9) is presented as a summary of overall performance.
These graphs compare the throughput of the I/O system at the three possible machine sizes.
These graphs are semi-log plots with an x-axis range of 1,000 to 10,000,000 VPs. Their y-axes
range from 0 to 32 megabytes/sec, to cover the entire performance range theoretically possible
with the tested hardware configuration. The left-most point on each line graphed represents a
VP ratio of 1.

4.2.2 Buffered I/O Results

The next two graphs (figures 10 and 11) illustrate the performance of buffered I/O. The buffer
size is 512 bytes, and the tests do 128 consecutive reads/writes of 4 bytes/VP to the buffer. The
buffer is flushed when it is full or when a CMFS_flush is called. The flush in the test is redundant,
since the buffer should be flushed automatically after 128 reads/writes. The maximum speed
this test could achieve is bounded by the synchronous tests of 512-byte/VP reads/write, since
the flush operation is exactly a synchronous 512-byte/VP read/write. These graphs are the
same format as the previous 8K, 16K, and 32K comparison graphs.

4.2.3 Performance Ranges for Individual Tests

The graphs devoted to a single machine size (figures 12 thru 17) report the time required to do a
specific operation. These graphs are limited to CMSS 6.1 results. For each machine size (8k, 16k,
32k), at least seven repetitions of the tests are run. The repetitions are run at various times so
that the state of the system ranges from quiescent to heavily loaded. The mean, maximum and
minimum times of the repetitions are plotted. This format illustrates the range of performance
values which may be expected in applications doing similar I/O operations. Only the graphs
of the running times for tests of 4-byte reads and writes are shown in the performance section
of this paper. The equivalent 512-byte graphs are uninteresting because the mean, maximum

| Physical Proccessors | Awvailable Ports | Procs/Ports |

8,192 (Seqs 0,1,2,3) | 1 8,192
16,384 (Seqs 0-1,2-3) | 1 16,384
32,768 (Seqs 0-3) 2 16,384

Table 1: Ratios of physical processors to CMIO bus ports for the attachable sizes of the CM-2.

and minimum times are indistinguishable, and the performance information is the same as that
presented in figures 2 thru 5. The mean, min and max lines for the 512-byte cases coincide
because the startup costs and latency are small compared to the time for the data transfer.

4.3 Conclusions — PARIS Tests

e Performance levels for 1, 2 and 4 sequencers.

The most obvious performance trend in the graphs which compare 8K, 16K and 32K
processor tests is that the 8K sizes consistently outperform the 16K and 32K sizes. The
512-byte read and write cases show a disparity of up to 100% between 1 sequencer and 2
or more sequencers. In these cases, there is a penalty for using more processors.

The explanation for this trend is that each physical processor in a VP-set doing an 1/0O
operation must communicate with the DataVault through the I/O ports connected to a
single CMIO bus. When one sequencer is communicating, the ratio of physical processors
to available CMIO bus ports is 8,192. When two sequencers (the sets 0-1 and 2-3 are
the two possible sets of 16K processors) are communicating with the I/O bus, only one
CMIO station id is available on a given CMIO bus (see figure 1). The ratio of physical
processors to available CMIO bus ports is 16,384. For the 32k case, the possible set of
sequencers is 0-3, and there are two station ids available on one CMIO bus (in figure 1,
CMIO bus 1 is connected to sequencers 1 and 3, which are both in the set of 32K physical
processors active). The ratio of physical processors to available CMIO bus ports is again
16,384. Table 1 summarizes the possible configurations. The ratios explain why the 8K
results are up to twice as fast as the 16K results, and why the 16K and 32K results are
nearly the same.

e Difference in performance between CMSS 6.0 and CMSS 6.1.

The comparisons between the timings done under version 6.0 and version 6.1 suggest that
optimizations made to improve throughput in version 6.1 were successful. The most dra-
matic improvement is seen in the 4 byte write test, which was the least efficient area
under CMSS 6.0. Many of the 4-byte write data points indicate an improvement of 100%
in throughput. The 4-byte reads improved by 5%—-10% depending on the VP ratio and
number of physical processors. The 512-byte reads and writes had less room for improve-
ment, since at higher VP ratios, these types of operations were already very efficient under
CMSS 6.0. For the most part, 512-byte read/write improved slightly, except for the 512
byte writes between 32K VP and 256K VP which are slightly slower (by less than 5%)
under 6.1 than they were under 6.0.

Overall, the improvements between CMSS 6.0 and CMSS 6.1 are significant, and the gains
in the 4-byte writes offset the partial deterioration of the 512-byte write cases.

e Efficiency of Buffered 1/O performance.

The buffered I/O scheme is a useful alternative to writing small amounts of data at a
time. The buffered 1/O performance is very close to non-buffered I/O performance of the
512-byte tests, which was the size dedicated to the I/O buffer. Comparing the figures for
the 512-byte unbuffered writes (figure 2), the 4-byte unbuffered writes (figure 6) and the

buffered writes (figure 10) shows that the buffered writes are 2 to 3 times faster than
the unbuffered 4-byte writes. Similarly, the buffered reads are faster than the unbuffered
4-byte reads, and slightly slower than the unbuffered 512-byte reads.

e Differences between 4-byte and 512-byte reads and writes.

The disparity between transfer rate of small (4-byte/VP) reads/writes and large (512-
byte/VP) reads/writes can be quite large (up to 20MB/sec). The 4-byte read/write is an
approximate measure of DataVault startup and overhead costs, since it is near the smallest
amount of data which can be transferred. In the 4-byte cases, there are fluctuations
between the mean, min and max, whereas the 512-byte cases do not have these fluctuations.
The time to read/write the data for the 512-byte cases dominates factors such as disk head
positioning and seek time, minimizing the presence of these costs in the graphs.

e Behavior of I/O at a wide-range of virtual processor ratios.

Overall, the I/O operations perform in an acceptable range for 4-byte and 512-byte sizes,
for all VP ratios. For a constant number of physical processors, the CM I/0O system is
most efficient when it does the read/write at a high VP ratio. Under CMSS 6.1, at a VP
ratio greater than 2, increasing the VP ratio results in a higher throughput. Throughput
above 20MB/sec for read and writes is available at VP ratios above 8 when using either
buffered or synchronous 512-byte reads/writes.

e Consistency of performance between sequencers.

The performance of sequencers on CMIO bus 1 is no different from the performance of
sequencers on CMIO bus 2. To prove this, a series of tests are run on sequencer 2 and
sequencer 1. The mean difference between times on sequencer 1 and sequencer 2 for a
given VP ratio is less than 0.01 secs. These tests indicate that the performance of the
two CMIO busses is essentially identical, and there is no tangible performance difference
between equal size processor sets.

5 CM Fortran Performance Tests, Graphs and Conclusions

The first two parts of this section explain the CM Fortran I/O tests, and discuss the perfor-
mance graphs. The third part presents conclusions on CM Fortran’s 1/O facilities.

5.1 CM Fortran Performance Tests

The I/0 tests in Fortran are compiled for slicewise execution, since this is how CM Fortran
codes achieve the best computational performance. The two types of storage format available
under CM Fortran Release 1.1 are slicewise format and fieldwise format. The emphasis of the
CM Fortran tests is to check that the DataVault can be effectively used from slicewise mode.
As a comparison, however, tests are also run from slicewise Fortran using fieldwise I/O format.

Fieldwise uses the same storage format as the PARIS based 1/0O, and requires transposing to
be compatible with slicewise Fortran executables. Therefore, fieldwise I/O is expected to be less
efficient than slicewise I/O when compiled under slicewise mode. Table 2 shows the naming
differences between slicewise (fms) and fieldwise I/O operations. For more information on the
CM Fortran Utility library I/O calls, see [1].

5.2 Graphs of Performance Results — CM Fortran Tests
The four graphs in this section cover CM Fortran I/O throughput under slicewise-compiled

mode. The first two graphs, figures 18 and 19 show the range of performance using the CM
Fortran Utility library FMS I/O calls. These calls write/read the data in the slicewise format.

| Operation | Slicewise | Fieldwise

READ CMF_array from file fms | CMF_array from file
WRITE CMF_array_to_file fms CMF_array to_file
Open File | CMF_file_open CMF file open

Table 2: Comparison of slicewise and fieldwise operations in the CM Fortran utility library.

The next two graphs, figures 20 and 21 show the performance for writing and reading using
the fieldwise format I/O calls (see table 2).

Figure 18 shows that I/O rates above 10MB/sec are most easily obtainable when more
than 10 megabytes are being written. Notice the steep increase in throughput between the 1
megabyte and 10 megabyte sizes, for all sequencer sets. This indicates that the total amount of
data transferred is more influential than data per processor in determining throughput. The 8k
performance line in figure 18 shows that writes of sizes less than 8MB resulted in transfer rates
under 7 MB/sec. The 16k cases achieved better than TMB/sec at all sizes above 1MB, with the
peak rates near 20MB/sec for 8MB and above. The 32K cases were about 6MB/sec slower than
the 16K sizes at all points above 128K.

The corresponding read performance, illustrated in figure 19 shows characteristics similar to
the write performance, with the steep change shifted to the 100Kbyte and 1 Mbyte range. In
the read statistics, however, all three sequencer sizes display relatively close levels of throughput
at the various transfer sizes, whereas the write performance is more dispersed. At sizes above
128K the read transfer rates were above 15MB/sec for all three configurations: 8K, 16K and
32k. The 16K and 32K sizes peaked near 20MB/sec for reads larger than 8MB, while the 8k
cases reached 25MB/sec for large reads. One explanation for the difference in performance at
the top range on both the write and read graph is described in detail under the section: PARIS
Performance levels for 1,2 and 4 sequencers.

The fieldwise graphs, figures 20 and 21, show that fieldwise performance is rather dismal
under slicewise mode. When transferring over 128 Kbytes of data, the CMF'S fieldwise I/O calls
are at least 3 times slower than the comparable slicewise operations under slicewise CM Fortran.
This is attributable to the transposing and data manipulation required to put slicewise data into
fieldwise format. For a given size, the transposing to fieldwise format takes approximately twice
as long as the I/O operation. For writes in fieldwise format, performance is never better than
4MB/sec for any size test. For reads, performance reaches nearly TMB/sec for IMB reads with
32K processors, but tails off for the next larger size.

5.3 Conclusions — CM Fortran Tests

There are several conclusions relevant to CM Fortran users which can be drawn from the CM
Fortran I/O performance graphs. These conclusions and the differences and similarities between
CM Fortran performance and PARIS performance are discussed in the following list.

e Slicewise users should use FMS calls.

Comparing the slicewise write and read graphs (figs. 18 and 19) to the fieldwise graphs
(figs. 20 and 21) shows that the FMS slicewise I/O calls are slightly more efficient for
small arrays, and much faster on larger arrays (sizes greater than 1Mbyte). The fieldwise
calls generally run out of memory for arrays larger than 10Mbytes which makes comparison
above that level impossible. In any case, slicewise CM Fortran I/O users should use the
FMS calls whenever compatibility with fieldwise format is not needed.

e CM Fortran I/O Performance is satisfactory for large arrays.

For arrays larger than 1 million floating point elements, CM Fortran I/O performance
is generally good. For write operations, one may expect 5-20 MB/sec throughput. For

read operations, 15-25 MB/sec throughput is obtainable on all different sequencer sets.
Generally, it is not efficient to write/read arrays smaller than 1 million single-precision
floating point elements in slicewise mode. Note that the CM Fortran Utility library does
not provide for buffered I/O or streaming I/O, as is possible in PARIS. The CMFS I/0
calls could be called from Fortran for this functionality, but the performance would be
hampered by the fieldwise nature of these routines.

e Differences in I/O behavior between CM Fortran and PARIS

CM Fortran never reaches the 30 MB/sec and above levels obtainable with large PARIS-
based transfers. The difference in efficiency between PARIS and CM Fortran is most likely
attributable to the format differences, and the fact that the DataVault and CMIO systems
were originally designed for fieldwise data. One advantage CM Fortran has over PARIS is
that the throughput rates remain relatively close for all sequencers at the higher transfer
sizes i.e. CM Fortran is more consistent than PARIS for different sequencer sizes.

e Similarities in I/O behavior between CM Fortran and PARIS

Several of the conclusions of the PARIS section above also apply to the CM Fortran 1/0
behavior of the CM. The PARIS tests are more extensive, and the behavior is examined
more closely below. Some examples of behavior which is safe to extrapolate to CM Fortran
I/O are: consistency of performance between sequencers; behavior of I/O at a wide-range
of virtual processor (VP) ratios (array sizes); and the basic explanation of throughput rate
levels for 1, 2 and 4 sequencers.

6 Summary

Performance of I/O on parallel supercomputers is a key component of overall performance
and usability of supercomputer applications. The Connection Machine DataVault I/O system
is designed for peak transfer rates of 32MB/sec. The major limitation of the current DataVault
configuration is its inability to use more than one CMIO bus to communicate between the
CM and the DataVault. This often means that problems running on 2 or more sequencers
of the DataVault will have a hard time duplicating the throughput rates of problems which
run on 1 sequencer because the ratio of processors to CMIO bus connections limits efficiency
on larger machine sizes. The actual performance of basic DataVault operations is close to
peak performance rates. CM Fortran provides a basic set of I/O routines which can achieve
performance in the 10-20 MB/sec range for arrays larger than 1 million single-precision floating
point elements. In PARIS, at high VP ratios, performance rates between 20-30MB/sec can be
expected. Overall, the DataVault is an effective 1/O system that facilitates application control
of I/O operations from the Connection Machine.

References

[1] Thinking Machines Corp. CM Fortran User’s Guide Version 1.0, Appendix A. Cambridge,
Mass., February 1991.

[2] Thinking Machines Corp. Connection Machine 1/0O System Programming Guide Version
6.1, Chap 3. Cambridge, Mass., October 1991.

CMIO Bus 2

1 2 station id
Port O

'- -— e o

o CM-2 ";

(I

: [Seq 1 Seq 3 :

| : Port :

: | 1 2 station id 3 |

|

1] CMIO Bus 1 |
Front DataVault
End Host

Figure 1: Basic architecture of CM I/0 system. Two 32 MB/sec busses connect the sequencers
of the CM to the ports of the DataVault. The two busses allow every sequencer to access the
DataVault. Only one of the ports of the DataVault may be active at a time, so the maximum
rate the DataVault may receive data is 32 MB/sec. Ethernet connections are represented with
dashed lines. This figure is based on a configuration drawing by Mike Melendez of Thinking
Machines Corp.

x107 Transfer Rate of 512 Byte/VP Writes - Ver. 6.1

25

15+

Bytes/sec

6]
103 104 105 106 107

Virtual Processors

Figure 2: Version 6.1 PARIS transfer rates of writing 512-bytes per virtual processor for 8,192,
16,384 and 32,768 physical processors.

x107 Transfer Rates of 512 Byte/VV P Write - Ver. 6.0

25

Bytes/sec

6]
103 104 105 106 107

Virtual Processors

Figure 3: Version 6.0 PARIS transfer rates of writing 512-bytes per virtual processor for §,192,
16,384 and 32,768 physical processors. Except for the 8K tests between 32,768 and 256K VPs,
performance under 6.0 is slightly slower than under 6.1.

x107 Transfer Rate of 512 Byte/VP Reads - Ver. 6.1

25

Bytes/sec

0]
103 104 105 106 107

Virtual Processors

Figure 4: Version 6.1 PARIS transfer rates of reading 512-bytes per virtual processor for 8,192,
16,384 and 32,768 physical processors.

10

x107 Transfer Rates of 512 Byte/VP Reads - Ver. 6.0

25

15+ B

Bytes/sec

0]
103 104 105 106 107

Virtual Processors

Figure 5: Version 6.0 PARIS transfer rates of reading 512-bytes per virtual processor for 8,192,
16,384 and 32,768 physical processors. Version 6.1 transfer rates are about 1-2 MB/sec faster
than these in each case.

x107 Transfer Rate of 4 Byte/VP Writes- Ver. 6.1

Bytes/sec

IR - Yo et I S S| L L

6]
103 104 105 106 107

Virtual Processors

Figure 6: Version 6.1 PARIS transfer rates of writing 4-bytes per virtual processor for 8,192,
16,384 and 32,768 physical processors.

11

x107 Transfer Rates of 4 Byte/VVP Write - Ver. 6.0

Bytes/sec

8k

05+ ’ x16k, 32k

L grl B

0 : AT
103 104 105 106 107

Virtual Processors

Figure 7: Version 6.0 PARIS transfer rates of writing 4-bytes per virtual processor for 8,192,
16,384 and 32,768 physical processors.

x107 Transfer Rate of 4 Byte/VP Reads- Ver. 6.1

25

15+

Bytes/sec

0.5~

0]
103 104 105 106 107

Virtual Processors

Figure 8: Version 6.1 PARIS transfer rates of reading 4-bytes per virtual processor for 8,192,
16,384 and 32,768 physical processors.

12

x107 Transfer Rates of 4 Byte/VP Reads - Ver. 6.0

25 b

15+

Bytes/sec

0.5~

0
103 104 105 106 107

Virtual Processors

Figure 9: Version 6.0 PARIS transfer rates of reading 4-bytes per virtual processor for 8,192,
16,384 and 32,768 physical processors.

x107 Transfer Rate of Buffered Writes- Ver. 6.1

25 b

15+

Bytes/sec

6]
103 104 105 106 107

Virtual Processors

Figure 10: Buffered writes Version 6.1 (PARIS). Each buffer is 512-bytes.

13

x107 Transfer Rate of Buffered Reads - Ver. 6.1

Bytes/sec

0]
103 104 105 106 107

Virtual Processors

Figure 11: Buffered Reads Version 6.1 (PARIS). Buffer size is 512-bytes. Performance is close
to that of 512-byte unbuffered reads under version 6.1 of CM system software.

14

Time to Write 4 Bytes/VVP - Seq 2, ver. 6.1
2.4 T T : — T T

2.2 ‘,‘ i

16+

1.4+

Time (sec)

1.2+

0.8~

0.6

0.4 T O R
103 104 105 106 107

Virtual Processors

Figure 12: Transfer rate of 4-byte/VP writes on 1 sequencer, using CM system software version
6.1 PARIS. The solid line is mean time of 7 runs, with the upper and lower dashed lines being
max and min times, respectively

Time to Write 4 Bytes/VVP - Segs 0-1, ver. 6.1
9 T : T —

Time (sec)

Virtual Processors

Figure 13: Transfer rate of 4-byte/VP writes on 2 sequencers, using CM system software version
6.1 PARIS. The solid line is mean time of 7 runs, with the upper and lower dashed lines being
max and min times, respectively

15

Time to Write 4 Bytes/\VVP - Segs 0-3, ver. 6.1

2.8

24+

2.2

Time (sec)

1.6+

1.4+

1.2
104
Virtual Processors
Figure 14: Transfer rate of 4-byte/VP writes on 4 sequencers, using CM system software version

6.1 PARIS. The solid line is mean time of 7 runs, with the upper and lower dashed lines being
max and min times, respectively

Time to Read 4 Bytes/VP - Seq 2, ver. 6.1
1.4 T T : — T T

0.8

Time (sec)

0.6

0.4+

0.2

0]
103 104 105 106 107

Virtual Processors

Figure 15: Transfer rate of 4-byte/VP reads on 1 sequencers, using CM system software version
6.1 PARIS. The solid line is mean time of 7 runs, with the upper and lower dashed lines being
max and min times, respectively

16

Time to Read 4 Bytes/VP - Segs 0-1, ver. 6.1

1.2+

Time (sec)
o
o4}

0.6

0.4+

6]
104 105 106 107

Virtual Processors

Figure 16: Transfer rate of 4-byte/VP reads on 2 sequencers, using CM system software version
6.1 PARIS. The solid line is mean time of 7 runs, with the upper and lower dashed lines being
max and min times, respectively

Time to Write 4 Bytes/VVP - Segs 0-3, ver. 6.1

2.6

24+

Time (sec)
N
N

1.8+

1.4+

1.2
104

Virtual Processors

Figure 17: Transfer rate of 4-byte/VP reads on 4 sequencers, using CM system software version
6.1 PARIS. The solid line is mean time of 7 runs, with the upper and lower dashed lines being
max and min times, respectively

17

CM Fortran Slicewise Write Throughput

30+ B

25+ b

20+

15+

MBytes/sec

10+~

108

Lol

6]
103 104

Bytes

Figure 18: Transfer rates of writes, using slicewise FMS CM Fortran Utility library. Rates are
shown for each of the three possible sequencer set sizes. The x-axis represents the size in bytes
of the array written to the DataVault. Sizes range from 10Kbytes to 64Mbytes

CM Fortran Slicewise Read Throughput

MBytes/sec

108

0
108

Bytes

Figure 19: Transfer rates of reads, using slicewise FMS CM Fortran Utility library. Rates are
shown for each of the three possible sequencer set sizes. Total read sizes range from 10Kbytes
to 64Mbytes

18

CM Fortran Fieldwise Write Throughput

25+ b

20+ B

15+ b

MBytes/sec

5r 32k b

L1 L

o ‘ L
103 104 105 106 107 108

Bytes

Figure 20: CM Fortran transfers rates of fieldwise writes, compiled in slicewise mode. Write
sizes ranging from 1Kbytes to 10Mbytes are shown.

CM Fortran Fieldwise Read Throughput

25 .

20+ B

15+ b

MBytes/sec

10+~ B

32k

O L L
103 104 105 106 107 108

Bytes

Figure 21: CM Fortran transfers rates of fieldwise reads, compiled in slicewise mode. Read sizes
ranging from 1Kbytes to 10Mbytes are shown.

19

